The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point

نویسندگان

  • Manjul Bhargava
  • Benedict H. Gross
چکیده

We prove that when all hyperelliptic curves of genus n ≥ 1 having a rational Weierstrass point are ordered by height, the average size of the 2-Selmer group of their Jacobians is equal to 3. It follows that (the limsup of) the average rank of the Mordell-Weil group of their Jacobians is at most 3/2. The method of Chabauty can then be used to obtain an effective bound on the number of rational points on most of these hyperelliptic curves; for example, we show that a majority of hyperelliptic curves of genus n ≥ 3 with a rational Weierstrass point have fewer than 20 rational points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hanoi lectures on the arithmetic of hyperelliptic curves

Manjul Bhargava and I have recently proved a result on the average order of the 2-Selmer groups of the Jacobians of hyperelliptic curves of a fixed genus n ≥ 1 over Q, with a rational Weierstrass point [2, Thm 1]. A surprising fact which emerges is that the average order of this finite group is equal to 3, independent of the genus n. This gives us a uniform upper bound of 3 2 on the average ran...

متن کامل

Implementing 2-descent for Jacobians of Hyperelliptic Curves

This paper gives a fairly detailed description of an algorithm that computes (the size of) the 2-Selmer group of the Jacobian of a hyperellitptic curve over Q. The curve is assumed to have even genus or to possess a Q-rational Weierstraa point.

متن کامل

Rational Points on Hyperelliptic Curves: Recent Developments

We give an overview over recent results concerning rational points on hyperelliptic curves. One result says that ‘most’ hyperelliptic curves of high genus have very few rational points. Another result gives a bound on the number of rational points in terms of the genus and the Mordell-Weil rank, provided the latter is sufficiently small. The first result relies on work by Bhargava and Gross on ...

متن کامل

Exhibiting Sha[2] on Hyperelliptic Jacobians

We discuss approaches to computing in the Shafarevich-Tate group of Jacobians of higher genus curves, with an emphasis on the theory and practice of visualisation. Especially for hyperelliptic curves, this often enables the computation of ranks of Jacobians, even when the 2-Selmer bound does not bound the rank sharply. This was previously only possible for a few special cases. For curves of gen...

متن کامل

Two Torsion in the Brauer Group of a Hyperelliptic Curve

We construct unramified central simple algebras representing 2-torsion classes in the Brauer group of a hyperelliptic curve, and show that every 2-torsion class can be constructed this way when the curve has a rational Weierstrass point or when the base field is C1. In general, we show that a large (but in general proper) subgroup of the 2torsion classes are given by the construction. Examples ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013